后端代码机器人架构 机器人代码开源
import com.github.mpjava.core.Message;
import com.github.mpjava.core.MessageHandler;
public class MyWeChatBot {
public static void main(String[] args) {
WeChatBot bot = new WeChatBot("Your_App_ID", "Your_App_Secret");
bot.setMessageHandler(new MessageHandler {
Override
public void onMessageReceived(Message message) {
String content = message.getContent;
if(content != null && content.startsWith("你好")) {
bot.sendMessage(message.getFromUser, "你好,感谢你的信息!");
});
bot.start;
这段代码展示了微信机器人的基本结构,包括消息接收处理和自动回复功能。
对于Python开发者,以下是使用HuggingChat框架加载对话模型的示例:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "microsoft/DialoGPT-medium
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
import torch
chat_history_ids = None
new_user_input = "你好,今天的天气怎么样?
new_user_input_ids = tokenizer.encode(new_user_input + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)